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1. Introduction

Recently, a lot of attention has been devoted to the study of quasinormal perturbations

in asymptotically anti-de Sitter (AdS) backgrounds. The first quasinormal mode (QNM)

computation in AdS space was done in [2] for a conformally invariant scalar field, and

then the problem was solved in [3] for any minimally-coupled scalar field in dimensions

d = 4, 5, and 7. The gravitational perturbations of global AdS4-Schwarzschild, which is

what we are interested in, have been computed for the first time in [4]. Since then, various

properties and generalizations of these QNM’s have been considered, such as asymptotic

relations [5, 6], different anti-de Sitter backgrounds [7, 8], or other boundary conditions [9].

We will phrase the problem in terms of the master field formalism that was developed

by Kodama and Ishibashi in [1]. Based on previous ideas developed by Regge, Wheeler,

and Zerill [10, 11] that were further extended in [4, 7, 12], Kodama and Ishibashi developed

this formalism to decouple the linearized Einstein equations for the gravitational pertur-

bations of the global AdS-Schwarzschild in a gauge-invariant way and in any number of

dimensions. In general, the perturbations in AdSd can be divided into tensor, vector, and

scalar perturbations, depending on whether they correspond to expansions in tensor, vec-

tor, or scalar spherical harmonics on the Sd−2 section of AdSd. The basic idea then is that

we can express each of these perturbations in terms of a master field Φ and the appro-

priate spherical harmonics, and all we have to do is solve a certain differential equation
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satisfied by Φ. This equation will in general depend on both the perturbation type we are

considering and on the number of dimensions.

We will restrict our attention to the scalar sector of the perturbations in d = 4, where

most QNM-related computations in the literature use a Dirichlet boundary condition on the

master field Φ near the boundary of AdS. The purpose of this paper is to comment on the

choice of this boundary condition, and to suggest that a Robin boundary condition1 would

be more appropriate, especially from the point of view of the AdS/CFT duality ([13 – 15];

for a review, see [16]). It follows from the AdS/CFT dictionary that a natural expectation

is to demand that the perturbations do not deform the metric on the boundary of AdS,

and this condition in turn determines the asymptotic behavior of the master field at the

boundary. While having no boundary deformations amounts in other similar situations to

imposing a Dirichlet boundary condition on Φ at the boundary, this is not the case for the

scalar sector of gravitational perturbations in AdS4, where a Robin boundary condition is

required (see section 3).2 Using the Robin boundary condition proposed in section 3, we

find a family of low-lying modes that were not seen when a Dirichlet boundary condition

was used instead (see for example [4]). In addition to the low-lying modes, we also find

a tower of modes that is similar to the tower of modes found in [4]. For details on what

makes the low-lying modes different, or for what other differences we find between our

QNM’s and the ones computed in [4], see section 4. It is important to note that our Robin

boundary condition doesn’t affect the vector gravitational perturbations in AdS4, because

in this case the Dirichlet boundary condition is still appropriate.

A good check on the values of the low-lying quasinormal frequencies comes from a

linearized hydrodynamics approximation on S2 ×R. The rationale of this approach lies in

the observation that since M-theory on AdS4-Schwarzschild×S7 is dual to a thermal CFT

on the boundary, some QNM’s should correspond to hydrodynamic modes of the thermal

CFT. This idea has been developed in several interesting papers: in [17 – 19] it was shown

that the quasinormal frequencies should correspond to poles of the correlation functions

on the field theory side, and in [19, 8, 20] this result was checked by explicit numerical

computations. We follow the approach in [21], where it was noted that the low-lying

scalar and vector modes in five-dimensional AdS-Schwarzschild can be computed through

a linearized hydrodynamics approximation. Extending the argument given in [21] to any

dimension, we derive an approximate formula for the low-lying scalar and vector modes in

AdSd. We find excellent agreement between the numerically found low-lying modes (using

our Robin boundary condition) and the linearized hydrodynamics prediction in d = 4.

The paper is organized as follows: in section 2 we present an overview of the general

1A Robin boundary condition specifies a linear combination of a function and its derivative at the

boundary.
2We can anticipate some trouble in the scalar sector of AdS4 perturbations just by looking at the general

large ρ dependence of the master field Φ for any kind of perturbations and in any number of dimensions.

In general, Φ satisfies a second order differential equation whose linearly independent solutions behave like

ρ
d−6

2
+j and ρ

4−d

2
−j , where j = 0, 1, or 2 for scalar, vector, or tensor perturbations, respectively. The

scalar perturbations in d = 4 are the first ones for which the behavior of the first family is subleading to

the behavior of the second family.
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setup of our calculation, in section 3 we comment on the choice of boundary conditions

and derive the boundary asymptotics for the master field Φ, in section 4 we show the

results of our numerical computation of the quasinormal frequencies of the global AdS4-

Schwarzschild solution, and finally, in section 5 we compare our results to what one would

expect from the analysis of linearized hydrodynamical analysis of a conformal plasma on

S2 × R.

2. Setup of the calculation

In this section we briefly review the setup of our calculation. The global AdS4-Schwarzschild

black hole solution is given by

ds2 = −
(

1 − ρ0

ρ
+

ρ2

L2

)

dτ2 +
dρ2

1 − ρ0

ρ + ρ2

L2

+ ρ2dΩ2
2 , (2.1)

where dΩ2
2 is the standard metric on the unit S2,

dΩ2
2 = γijdyidyj = dθ2 + sin2 θdφ2 . (2.2)

This metric is a solution to the Einstein equations that follow from the action

S =
1

2κ2

∫

d4x
√

g

(

R +
6

L2

)

. (2.3)

The horizon radius of the black hole solution (2.1) is then the positive root of the equation

ρ0 = ρH

(

1 +
ρ2

H

L2

)

. (2.4)

For future reference, the mass, entropy, and Hawking temperature of this black hole solution

are:

M =
4πρ0

κ2
S =

8π2ρ2
H

κ2
T =

1 + 3ρ2
H/L2

4πρH
. (2.5)

We are interested in linear perturbations of the background metric (2.1), of the form

gab+δgab, that satisfy the linearized Einstein equations following from (2.3). The boundary

conditions satisfied by these perturbations will be discussed in section 3.

The linearized equations satisfied by the perturbations can be solved by separation

of variables. We assume δgab ∼ e−iωτΦ(ρ)Sab(θ, φ), where the functions Sab depend only

on the angular variables on S2, and can be written in terms of the spherical harmonics

Ylm(θ, φ) and generalizations thereof. The exact equations describing the scalar, vector,

and tensor perturbations of the d-dimensional AdS-Schwarzschild background can be found

in [1]. As discussed previously, we will only focus on the scalar perturbations in the case

d = 4. Using the notation in [21], we split the coordinates ya = (τ, ρ, θ, φ) into yα = (τ, ρ)

and yi = (θ, φ). We denote by ∇i the covariant derivative with respect to the metric (2.2)

on S2, and by Dα the covariant derivatives with respect to the two-dimensional metric

ds2
2 = −fdτ2 +

1

f
dρ2 f = 1 − ρ0

ρ
+

ρ2

L2
. (2.6)
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The equations describing the scalar perturbations then read:

δgαβ = fαβ S(θ, φ) δgαi = ρfα Si(θ, φ)

δgij = 2ρ2 [HL(τ, ρ) γij S(θ, φ) + HT (τ, ρ)Sij(θ, φ)] (2.7)

Si = − 1

kS
∂iS Sij =

1

k2
S

∇i∂jS +
1

2
γijS (2.8)

H = m + 3w w =
ρ0

ρ
m = k2

S − 2 (2.9)

Xα =
ρ

kS

(

fα +
ρ

kS
∂αHT

)

Fαβ = fαβ + DαXβ + DβXα (2.10)

F = HL +
1

2
HT +

1

ρ
(∂αρ)Xα

Fα
α = 0 DαFαβ = 2∂βF (2.11)

Fαβ =
1

H

(

Dα∂β (ρHΦ) − 1

2
gαβDγ∂γ (ρHΦ)

)

(2.12)

(

Dα∂α − VS(ρ)

f

)

Φ = 0 (2.13)

VS(ρ) =
f

ρ2H2

[

m3 + m2 (2 + 3w) + 9mw2 + 9w2 (2f + 3w − 2)
]

. (2.14)

where S denotes any of the spherical harmonics Ylm on S2, and k2
S is the corresponding

eigenvalue of the laplacian:

(

∇i∂
i + k2

S

)

S = 0 S(θ, φ) = Ylm(θ, φ) k2
S = l(l + 1) . (2.15)

It is worth noting that the above master field formulation is gauge invariant. So equa-

tions (2.7)–(2.14) don’t determine the perturbations δgab uniquely: there is an implicit

freedom of choosing four of these functions through a gauge transformation of the form

δgab → δgab+∇avb+∇bva, where this time ∇a denotes the covariant derivative with respect

to the full four-dimensional metric (2.1), and va are arbitrary functions. A small discussion

of our gauge choice and the residual gauge freedom is included in the appendix.

3. Boundary conditions

3.1 Boundary conditions at ρ = ∞

The question of what boundary conditions one should impose on the master field Φ at the

boundary of AdS does not have a well-established answer: most of the previous authors

have set Φ(∞) = 0 (see, for example, [22, 23, 5, 6]), but other boundary conditions have

also been used (see, for example, [9]).3 As we shall see below, the AdS/CFT dictionary

relating perturbations and expectation values of operators in the dual field theory might

help clarify this point.

3It is not clear to us how the boundary condition that we find is related to the one proposed in [9].
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From the AdS/CFT perspective, there are two independent behaviors of the metric

perturbations δgab at large ρ: δgab ∼ ρ2, which corresponds to a deformation of the bound-

ary metric, and δgab ∼ 1/ρ, which corresponds to a non-zero VEV of the stress-energy

tensor in the boundary theory. In defining the quasinormal frequencies it is sensible to

require that the metric perturbations do not change the boundary metric, so they only

produce a non-zero VEV of the stress-energy tensor 〈Tab〉 of the thermal plasma on the

boundary. This prescription is equivalent to requiring the quasinormal frequencies to cor-

respond exactly to the poles of the correlation functions in the strongly coupled dual CFT

in the planar limit (see for example [17]). With this in mind, the significant challenge is to

find the relation between the asymptotic behaviors of δgab and Φ, which is what we’ll now

turn to.

At large ρ, the master equation (2.13) takes the form
[

Ω2

L2
+

ρ2

L4
∂ρρ

2∂ρ −
k2

S

L2
− 18ρ2

0

L4

1

(k2
S − 2)2

]

Φfar = 0 , (3.1)

where we have assumed e−iωτ behavior and denoted ω = Ω/L. Being a second order differ-

ential equation, equation (3.1) has two linearly independent solutions. Their asymptotic

behaviors at large ρ are given by:

Φfar(ρ) = e−iΩτ/L

[

ϕ(0) + O
(

L2

ρ2

)]

and

Φfar(ρ) = e−iΩτ/L

[

ϕ(1) L

ρ
+ O

(

L3

ρ3

)]

.

(3.2)

As noted earlier, the boundary condition that has been mostly used in the literature

is ϕ(0) = 0. As we shall see shortly, this condition is not consistent with the idea that

δgab ∼ 1/ρ is the only behavior allowed. To argue this, we choose to work in axial gauge

(δgρa = 0), and we derive the boundary condition on Φ required by δgab ∼ 1/ρ. While

we include a detailed and more complete derivation in the appendix, we now present the

simplest way of arriving at the proposed boundary condition.

Setting L = 1, we can plug (3.2) into equation (2.12) and obtain, for the Fτρ compo-

nent

Fτρ = ie−iΩτ

(

ϕ(1) +
3ρ0ϕ

(0)

k2
S − 2

)

1

ρ
+ O

(

1

ρ2

)

. (3.3)

Using axial gauge and, as discussed above, assuming δgab ∼ 1/ρ, we have:

fτρ = 0 fρρ = 0 fρ = 0

HL =
A

(3)
L e−iΩτ

ρ3
+ O

(

1

ρ4

)

HT =
A

(3)
T e−iΩτ

ρ3
+ O

(

1

ρ4

)

fττ =
B(1)e−iΩτ

ρ
+ O

(

1

ρ2

)

fτ =
C(2)e−iΩτ

ρ2
+ O

(

1

ρ3

)

.

(3.4)

By using (2.10) we can compute

Fτρ = e−iΩτ −3C(2)kS + 6iA
(3)
T Ω

k2
S

1

ρ2
+ O

(

1

ρ3

)

. (3.5)
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This means that axial gauge and δgab ∼ 1/ρ force Fτρ to behave as 1/ρ2. By comparing

this behavior to the general expectation (3.3), we conclude that the 1/ρ term in (3.3) must

vanish:

ϕ(1) +
3ρ0ϕ

(0)

k2
S − 2

= 0 . (3.6)

Thus we obtain a Robin boundary condition, involving the master field and its derivative.

3.2 Boundary conditions at the horizon

In contrast to the large ρ boundary conditions whose derivation was somewhat subtle and

tedious, the horizon boundary conditions are straightforward, being based on the require-

ment that classical horizons don’t radiate. So in appropriate coordinates, the perturbations

near the horizon should take the form of an infalling wave. To make this explicit, we define

the standard “tortoise” coordinate by

r∗ =

∫

dρ

f(ρ)
, (3.7)

which puts the master equation (2.13) into the form
[

−∂2
τ + ∂2

r∗ − VS(ρ)
]

Φ = 0 . (3.8)

Here, ρ → ρH corresponds to r∗ → −∞. Noticing that VS(ρH) = 0, we can immediately

see that the near horizon behavior of the two linearly independent solutions to the master

equation are e−iΩ(τ±r∗)/L:

Φnear(ρ) = Ue−iΩ(τ+r∗)/L + V e−iΩ(τ−r∗)/L . (3.9)

The infalling boundary condition then means setting V = 0.

4. Numerical solutions

4.1 Change of variables

In order to solve the master equation (2.13) numerically, it is convenient to recast it in

terms of a different field ψ(y), defined by factoring out the near horizon behavior of the

master field Φ(ρ):

Φ = e−iΩ(τ+r∗)/Lψ(y) y = 1 − ρH

ρ
. (4.1)

Setting L = 1, we can plug this ansatz into the master equation (2.13) to obtain the

differential equation satisfied by ψ. We obtain
[

s(y)∂2
y + t(y)∂y + u(y)

]

ψ(y) = 0 , (4.2)

where

s(y) = K(y)(1 − y)4f2

t(y) = K(y)

[

(1 − y)2f
∂

∂y

[

(1 − y)2f
]

− 2iΩρH(1 − y)2f

]

u(y) = −K(y)ρ2
HVS

K(y) =
1

y

[

1 + k2
S + 3ρ2

H − 3y(1 + ρ2
H)

]2
.

(4.3)
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Here, K(y) has been chosen so that s(y), t(y), and u(y) are polynomial expressions in y

that don’t have any common factor and that don’t vanish for any y between 0 and 1.

The remaining challenge before we proceed to solve the differential equation (4.2) is to

translate the Robin boundary condition for Φ (3.6) into a boundary condition for ψ. This

can be done by writing the first two terms in the series expansion of (4.1) at large ρ:

Φ(ρ) ∼ e−iΩ(τ+ρ∗)

[

ψ(1) +
iΩψ(1)

ρ
− ρHψ′(1)

ρ
+ O

(

1

ρ2

)]

. (4.4)

We get:

ψ′(1) =
1

ρH

[

3ρ0

k2
S − 2

+ iΩ

]

ψ(1) . (4.5)

Of course, the near horizon boundary condition V = 0 translates into

ψ(0) = 1 , (4.6)

and we can now turn to describing the numerical techniques that we use to solve the

differential equation (4.2) with the boundary conditions (4.5) and (4.6).

4.2 Numerical method and results

Following the method used in [21] for the computation of quasinormal frequencies of the

scalar modes, we integrate the differential equation (4.2) in three steps: 1) we develop a

series expansion around y = 0 and evaluate it at y = yi = 1
4 ; 2) we integrate the differential

equation numerically by using Mathematica’s NDSolve from y = yi to y = yf (to be given

below); and 3) we match our numerical solution onto a series expansion around y = 1, which

is computed using the boundary condition (4.5). In doing the matching, we compute the

Wronskian between the numerical solution and the analytical approximation near y = 1.

The Wronskian vanishes only when the two functions are linearly dependent, i.e. when ψ

satisfies the boundary condition (4.5) at y = 1.

In developing the series expansions, we should keep in mind that the series solutions

are guaranteed to converge only when s(y), seen as a function of the complex variable y,

doesn’t vanish. It is easy to obtain the zeroes of s(y) by writing

s(y) = y(y − y1)
2(y − y2)

2(y − ȳ2)
2 , (4.7)

where

y1 = 1 +
k2

S − 2

3(1 + ρ2
H)

y2 = 1 +
ρ2

H

2(1 + ρ2
H)

+
iρH

√

4 + 3ρ2
H

2(1 + ρ2
H)

.

(4.8)

It follows that the series expansion around y = 0 converges on the whole interval between

0 and 1 (though the convergence close to y = 1 might be slow, because of the nearby zero

of s(y)). Similarly, the series expansion around y = 1 has a radius of convergence r equal

to the minimum of |y1 − 1| =
k2

S−2

3(1+ρ2
H

)
and |y2 − 1| = ρH√

1+ρ2
H

(see figure 1). Experience has

shown that a good value for yf was yf = 1 − r/4.

– 7 –



J
H
E
P
0
2
(
2
0
0
7
)
0
2
3

y

y1

y2

y2

0 2

(i)
(ii)

1

(iii)

Figure 1: The zeroes of s(y) represented as crosses in the complex plane. The red cross at y = 0

denotes a simple zero, while the green crosses denote double zeroes. We use a series expansion in

region (i), numerical integration in region (ii), and another series expansion in region (iii).

freq\l 2 3 4 5 6

Ω0 2.156 − 0.285 i 3.361 − 0.354 i 4.487 − 0.333 i 5.561 − 0.298 i 6.608 − 0.266 i

Ω1 3.463 − 2.573 i 4.461 − 2.443 i 5.528 − 2.271 i 6.577 − 2.106 i 7.610 − 1.963 i

Ω2 5.230 − 4.942 i 6.023 − 4.791 i 6.964 − 4.571 i 7.935 − 4.340 i 8.910 − 4.126 i

Ω3 7.096 − 7.308 i 7.757 − 7.165 i 8.592 − 6.942 i 9.484 − 6.685 i 10.40 − 6.432 i

Ω4 9.002 − 9.670 i 9.572 − 9.540 i 10.32 − 9.327 i 11.15 − 9.064 i 12.00 − 8.794 i

Ω5 10.93 − 12.03 i 11.43 − 11.91 i 12.12 − 11.71 i 12.89 − 11.45 i 13.69 − 11.18 i

Ω6 12.86 − 14.39 i 13.32 − 14.28 i 13.95 − 14.09 i 14.68 − 13.84 i 15.44 − 13.56 i

Ω7 14.81 − 16.74 i 15.23 − 16.64 i 15.82 − 16.47 i 16.50 − 16.23 i 17.23 − 15.95 i

Ω8 16.76 − 19.10 i 17.14 − 19.00 i 17.70 − 18.84 i 18.35 − 18.61 i 19.04 − 18.34 i

Table 1: Frequencies of scalar quasinormal modes for ρH = 1 in units where L = 1.

Using the method described above, we computed the lowest nine quasinormal frequen-

cies for ρH = 1 and l = 2, 3, 4, 5, and 6 (see table 1), and for ρH = 0.2, 1, 10, and 100 at

fixed l = 2 (see table 2). In these tables we have included only the quasinormal modes with

Re Ω > 0; equation (4.2) implies that if Ω is a quasinormal frequency, then so is −Ω∗, so

the QNM’s with negative real parts can be trivially obtained from the ones with positive

Re Ω.

The most prominent feature of the quasinormal modes included in tables 1 and 2 is the

separation of the quasinormal frequencies Ωn into two groups: a main series of fast modes

given by Ωn with n ≥ 1, and low-lying slow modes given by Ω0 (for a similar feature of

the quasinormal frequencies in AdS5-Schwarzschild see [21]). The low-lying modes differ

significantly from the fast ones in a number of ways:

• While the fast modes form a tower of modes at each value of ρH and l, the low-lying

modes stand out as not being part of this tower (see figure 2).

– 8 –



J
H
E
P
0
2
(
2
0
0
7
)
0
2
3

freq\ρH 0.2 1 10 100

Ω0 2.793 − 0.0008 i 2.156 − 0.285 i 1.739 − 0.066 i 1.732 − 0.007 i

Ω1 4.201 − 0.084 i 3.463 − 2.573 i 18.66 − 26.63 i 185.0 − 266.4 i

Ω2 5.468 − 0.523 i 5.230 − 4.942 i 31.84 − 49.17 i 316.1 − 491.6 i

Ω3 6.896 − 1.121 i 7.096 − 7.308 i 44.95 − 71.70 i 446.5 − 716.8 i

Ω4 8.416 − 1.735 i 9.002 − 9.670 i 58.03 − 94.22 i 576.6 − 941.8 i

Ω5 9.984 − 2.348 i 10.93 − 12.03 i 71.10 − 116.7 i 706.6 − 1167 i

Ω6 11.58 − 2.956 i 12.86 − 14.39 i 84.18 − 139.2 i 836.6 − 1392 i

Ω7 13.20 − 3.559 i 14.81 − 16.74 i 97.25 − 161.8 i 966.5 − 1617 i

Ω8 14.83 − 4.158 i 16.76 − 19.10 i 110.3 − 184.3 i 1096 − 1842 i

Table 2: Frequencies of scalar quasinormal modes for l = 2 in units where L = 1.

l\ρH 5 10 20 50 100

2 1.761 − 0.129 i 1.739 − 0.066 i 1.734 − 0.033 i 1.732 − 0.013 i 1.732 − 0.007 i

3 2.547 − 0.312 i 2.474 − 0.164 i 2.456 − 0.083 i 2.450 − 0.033 i 2.450 − 0.017 i

4 3.380 − 0.537 i 3.219 − 0.292 i 3.177 − 0.149 i 3.165 − 0.060 i 3.163 − 0.030 i

5 4.273 − 0.787 i 3.979 − 0.449 i 3.900 − 0.231 i 3.877 − 0.093 i 3.874 − 0.047 i

6 5.230 − 1.043 i 4.761 − 0.631 i 4.628 − 0.329 i 4.590 − 0.133 i 4.584 − 0.067 i

7 6.246 − 1.286 i 5.566 − 0.836 i 5.362 − 0.442 i 5.303 − 0.180 i 5.294 − 0.090 i

8 7.311 − 1.499 i 6.399 − 1.059 i 6.103 − 0.570 i 6.017 − 0.233 i 6.004 − 0.117 i

9 8.410 − 1.675 i 7.262 − 1.297 i 6.852 − 0.713 i 6.731 − 0.292 i 6.714 − 0.147 i

Table 3: Frequencies of some of the low-lying modes in units where L = 1.

• The low-lying modes have a different ρH-scaling from the main-series ones (see fig-

ure 2). This feature is most clearly seen at large ρH , where the low-lying modes

approach Ω =
√

l(l + 1)/
√

2 as ρH → ∞ (see next point), while the main series

modes grow proportional to ρH : compare, for example, the columns corresponding

to ρH = 10 and ρH = 100 in table 2.

• The low-lying modes can be interpreted as the linearized hydrodynamic modes of a

conformal plasma on S2 × R. While we will explain this correspondence in more

detail in section 5, for now it is worth mentioning that a linearized hydrodynamics

approximation on S2 × R gives, up to first order in 1/ρH , that

Ω = ± kS√
2
− i

k2
S − 2

6ρH
+ O

(

1

ρ2
H

)

, (4.9)

with kS =
√

l(l + 1). A plot of low-lying modes for various values of l and ρH ,

together with the hydrodynamics prediction (4.9) can be seen in figure 3, which is

based on the numerical values in table 3.
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(a) ρH = 0.2
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(b) ρH = 1
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(c) ρH = 10

Figure 2: Quasinormal frequencies for ρH = 0.2, ρH = 1, and ρH = 10, in units where L = 1. The

black dots represent the main-series modes, while the red ones represent the low-lying modes. It is

fairly clear that for ρH = 0.2 and 1 the low-lying modes are not part of main series tower. This is

not obvious in the ρH = 10 case, because of the plot scale.
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Figure 3: Quasinormal frequencies for different values of ρH plotted against l, in units where L = 1.

The blue stars correspond to ρH = 5, the red triangles to ρH = 10, the dark green diamonds to

ρH = 20, the light green triangles (barely visible) to ρH = 50, and the dark blue stars to ρH = 100.

The dotted line represents the linearized hydrodynamics prediction (4.9), which matches almost

perfectly the numerical results for large ρH .

It is worth noting that while the tower-like feature of the scalar QNM’s can be observed

even if one imposes a Dirichlet boundary condition, the low-lying modes have not been

seen in either numerical computations or analytical approximations that use the Dirichlet

boundary condition (see, for example, [22, 6]).

Leaving the low-lying modes aside, we can compare the structure of the main series

modes to the structure of the modes described in [22] that come from imposing the Dirichlet

boundary condition on the master field. We find that the spacing between the main series

modes at large Ω asymptotically approaches the spacing between the modes computed

in [4]. However, the initial offset of the tower is different, our modes being in between the

ones found in [4].

5. Linearized hydrodynamics

In [21] it was noticed that in the case of the global AdS5 black hole there was a separation

in the imaginary parts of low-lying scalar modes and the “main series” modes. The for-

mer were interpreted as hydrodynamic modes and the latter as microscopic. So a simple

treatment of linearized hydrodynamics should be able to reproduce these low-lying modes

in other dimensions as well. The goal of this section is to develop such a treatment.

In thinking about hydrodynamics, the general setup on Sd−2 × R is given by the

following relations:

Tab = (ε + p)uaub + pg̃ab + τab

τab ≡ −η

(

∆ac∇̃cub + ∆bc∇̃cua −
2

d − 2
∆ab∇̃cuc

)

− ξ∆ab∇̃cuc

∆ab = g̃ab + uaub

∇̃aTab = 0 . (5.1)

where g̃ab is the metric on Sd−2 ×R and ∇̃a is the covariant derivative with respect to this

metric. Since the theory on the boundary of AdS is conformal we expect T a
a = 0, which
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implies both ε = (d − 2)p and ξ = 0. Following the same approach as in [21], we ignore

the temperature-independent contribution from the Casimir energy to T ab. The Casimir

energy comes from considering the quantum field theory on the compact space Sd−2. For

our purposes we can think of it as a temperature-independent shift of the zero point energy,

which can be safely ignored.

The vector ua describes the velocity at each point in the fluid, and we choose to

normalize it by imposing uaua = −1. Let us denote ua = (1, ui) where i runs over the Sd−2

directions. In the linearized approximation we consider ui to be small. Perturbing at the

same time the pressure p = p0 + δp, one can derive from (5.1) the linearized equations

(d − 2)
∂δp

∂τ
+ (d − 1)p0∇̃iu

i + η
∂

∂τ
∇̃iu

i = 0

(d − 1)p0
∂ui

∂τ
+ ∇̃iδp + η(∂2

τ ui − ∇̃2ui) − η
d − 4

d − 2
∇̃i∇̃ju

j = 0 .

(5.2)

Note that for d = 5 equation (5.2) reduces to the linearized Navier-Stokes equation on S3,

which was analyzed in section 5.3 of [21]. We wish to examine scalar perturbations next,

which are described by the ansatz

δp = K1e
−iΩτ

S ui = K2e
−iΩτ ∇̃i

S , (5.3)

where S satisfies
(

∇̃2 + k2
S

)

S = 0, as explained in section 2, and L = 1. Plugging (5.3)

into (5.2), we obtain the following system of equations for K1 and K2:

−iΩ(d − 2)K1 − K2k
2
S ((d − 1)p0 − iηΩ) = 0

K1 + K2

(

−iΩ(d − 1)p0 − ηΩ2 + 2η
d − 3

d − 2
k2

S − (d − 3)η

)

= 0 .
(5.4)

In order to have non-trivial solutions, this system must have zero determinant. This gives a

cubic equation for Ω, whose solutions can be given in terms of a series expansion in η/p0:

Ω = ± kS√
d − 2

− i
η

p0

k2
S(d − 3) − (d − 2)(d − 3)

(d − 1)(d − 2)
+ O

(

η2

p2
0

)

(5.5)

We can connect this result to the AdS4 quasinormal mode problem by noting that

η

p0
=

4πη

s

ρH

1 + ρ2
H

, (5.6)

which can be easily derived from (2.5) in the case d = 4, but it is actually true in any

number of dimensions. Using the conjectured lower bound on the viscosity η
s = 1

4π [24, 25],

that has been checked in the AdS4 case in [26], we find

Ω = ± kS√
d − 2

− i
1

ρH

k2
S(d − 3) − (d − 2)(d − 3)

(d − 1)(d − 2)
+ O

(

1

ρ2
H

)

. (5.7)

It is easily seen that this reproduces the hydrodynamical modes previously discussed in the

global AdS5 black hole case in [21]. For d = 4, equation (5.7) reduces to (4.9).
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Similarly, we can describe the low-lying vector modes by the ansatz:

δp = 0 ui = K3e
−iΩτV i . (5.8)

We find that the corresponding frequencies Ω are given by

Ω = −i(d − 1)
1 −

√

1 − 4k2
V

η2

(d−1)2p2
0

2η/p0
= −i

k2
V η

(d − 1)p0
+ O

(

η2

p2
0

)

Ω = −i
k2

V

d − 1

1

ρH
+ O

(

1

ρ2
H

)

.

(5.9)

It is interesting to note that the numerical value given by this formula when d = 4, l = 2

and ρH = 100 agrees within 10% with the low-lying vector mode of table 9 in [22].

6. Conclusions

In this note we examine the relation between the asymptotic behavior of the master field

and the behavior of the scalar sector of metric perturbations in the global AdS4 black hole.

We argue that the boundary condition that corresponds to a non-deformation of the metric

on the boundary translates into a Robin boundary condition for the master field. With

this boundary condition, we compute the scalar quasinormal modes. We find some low-

lying modes that have not been previously observed, and compare them with the linearized

hydrodynamical modes of the boundary CFT.

Acknowledgments
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and a careful reading of the draft.

A. Gauge freedom and boundary conditions

In this section we derive the asymptotic expressions for the metric perturbations δgab by

solving the system of equations (2.7)–(2.13). In doing so, it is important to realize that

equations (2.7)–(2.13) don’t determine the metric perturbations uniquely. We have seen

that the gauge freedom4

δgab → δgab + ∇avb + ∇bva (A.1)

present in any perturbation theory problem in general relativity enables us to set δgρa = 0

(this is what we referred to as axial gauge). However, even after we set δgρa = 0 we still

have a residual gauge freedom left, and we would like to understand this residual gauge

freedom a bit better before we derive the asymptotic expressions for δgab.

The first thing to note is that generic gauge transformations of type (A.1) do not

preserve the form of the metric (2.7). Instead, generic transformations would just map our

4In this section ∇a denotes the covariant derivative with respect to the four-dimensional metric (2.1).
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initial solution onto something that doesn’t transform under the SO(3) isometry group of

S2 in any definite way. We only look at perturbations with the specific SO(3) structure

defined in (2.7). Therefore, we need to restrict the class of allowed gauge transformations

to the ones that preserve this SO(3) structure. Such transformations are of the form

va(τ, ρ, θ, φ) =
(

hτ (τ, ρ)S(θ, φ) hρ(τ, ρ)S(θ, φ) h(τ, ρ)Sθ(θ, φ) h(τ, ρ)Sφ(θ, φ)
)

, (A.2)

and they give

2∇(αvβ) = 2D(αhβ)S 2∇(αvi) =

[

∂αh − hαkS − 2

ρ
(∂αρ)h

]

Si

2∇(ivj) = −2hkSSij + (hkS + 2ρfhρ) γijS .

(A.3)

It is easy to see now that if we start with any scalar perturbation of the form (2.7), we

can set δgρa = 0 by solving three first order non-homogeneous differential equations for

hτ , hρ, and h. The residual freedom that remains after setting δgρa = 0 is reflected in

the choice of the three integration constants (which are functions of τ) that enter in the

general solutions of these equations. So in addition to setting δgρa = 0 we also have

the freedom to prescribe the time behavior of three of the other components of δgab at

a given point. In particular, the gauge freedom allows us to set the large ρ behavior of

three such components to have no ρ2 term in a large ρ series expansion. Requiring all of

these components (which are described by the four functions HT , HL, fτ , fττ ) to have

no ρ2 terms cannot be accomplished by making a gauge transformation, and is therefore

meaningful as a boundary condition on the metric perturbations.

We now turn to the problem of finding the asymptotic expressions for the metric

coefficients δgab in axial gauge. We will set L = 1 throughout the entire calculation. With

the assumption

fρρ = fρ = 0 fττ = e−iΩτB(ρ) fτ = e−iΩτC(ρ)

HL = e−iΩτAL(ρ) HT = e−iΩτAT (ρ)
(A.4)

we first compute the quantities F and Fαβ that enter in equations (2.11) and (2.12):

F =
e−iΩτ

2k2
S

(

k2
S [2AL(ρ) + AT (ρ)] + 2ρfA′

T (ρ)
)

Fττ =
e−iΩτ

k2
S

(

−2ikSρΩC(ρ) + k2
SB(ρ) − ρ2

[

2Ω2AT (ρ) + ff ′A′
T (ρ)

])

Fτρ =
e−iΩτ

k2
Sf

(

kSfC(ρ) − 2iΩρf
[

AT (ρ) + ρA′
T (ρ)

]

+

+ρfkSC ′(ρ) + iΩρ2f ′AT (ρ) − kSρf ′C(ρ)
)

Fρρ =
e−iΩτρ

k2
Sf

(

A′
T (ρ)

[

4f + ρf ′
]

+ 2ρfA′′
T (ρ)

)

, (A.5)

and Fρτ = Fτρ. The plan now is to plug the above expressions into equations (2.11)

and (2.12), and find a series solution for the corresponding differential equations. In order to
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do this though, we need to get hold of the right-hand side of equation (2.12), perhaps in the

form of a large ρ series expansion. This can be done by solving the master equation (2.13):

Φ(ρ) = ϕ(0) +
ϕ(1)

ρ
+

ϕ(2)

ρ2
+

ϕ(3)

ρ3
+ · · · , (A.6)

where

ϕ(2) =

[

9ρ2
0

(k2
S − 2)2

+
k2

S − Ω2

2

]

ϕ(0)

ϕ(3) =

[

− 18ρ3
0

(k2
S − 2)3

− ρ0(2 + k2
S)

2(k2
S − 2)

]

ϕ(0) +

[

3ρ2
0

(kS − 2)3
+

k2
S − 2 − Ω2

6

]

ϕ(1) (A.7)

and all higher order terms can be expressed in terms of linear combinations of ϕ(0) and ϕ(1).

The two constants ϕ(0) and ϕ(1) can thus be interpreted as the two integration constants

that appear when we integrate the master equation, which is a second order ODE. The

above expansion can then be used to find a series expansion of the right-hand side of

equation (2.12). The resulting expressions are long and not that insightful, so we will not

reproduce them here; their derivation is nevertheless straightforward.

We now solve for the functions AL(ρ), AT (ρ), B(ρ), and C(ρ) that completely deter-

mine the metric perturbations via

δgρρ = δgτρ = δgρi = 0

δgττ = e−iΩτB(ρ) S(θ, φ) δgτi = ρe−iΩτC(ρ) Si(θ, φ)

δgij = 2ρ2e−iΩτ [AL(ρ) γij S(θ, φ) + AT (ρ) Sij(θ, φ)] (A.8)

in four steps:

1. We first solve for AT (ρ) from the Fρρ equation in (2.12) with the l.h.s. given by the

corresponding expression in (A.5) and the r.h.s. computed from the series expan-

sion (A.6). We find:

AT (ρ) = A
(0)
T +

A
(2)
T

ρ2
+

[

k2
Sρ0

2(k2
S − 2)

(

ϕ(1) +
3ρ0ϕ

(0)

k2
S − 2

)

+

+
k2

S(k2
S − 2Ω2)

12
ϕ(0)

]

1

ρ3
+ O

(

1

ρ4

)

.

(A.9)

Here, we can think of A
(0)
T and A

(2)
T as integration constants: we have two integration

constants because the differential equation satisfied by AT (ρ) is second order, as can

be easily seen from the Fρρ relation in (A.5).

2. Next, we solve for C(ρ) from the Fτρ equation in (2.12). Again, the l.h.s. of this

equation is given in (A.5), and the r.h.s. can be computed from (A.6). We obtain:

C(ρ) = C(−1)ρ +

[

− ikSΩ

2

(

ϕ(1) +
3ρ0ϕ

(0)

k2
S − 2

)

+
kSC(−1) + iΩ(2A

(2)
T − A

(0)
T )

kS

]

1

ρ
+

+

[

ρ0(iΩA
(0)
T − kSC(−1))

kS
− ikSΩ(k2

S − 2)

6
ϕ(0)

]

1

ρ2
+ O

(

1

ρ3

)

,

(A.10)
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where C(−1) is an integration constant — we can see from the Fτρ relation in (A.5)

that the corresponding differential equation for C(ρ) is a first order ODE, so its

solution has to have one integration constant.

3. Similarly, we next solve for B(ρ) from the Fττ equation in (2.12). As can be seen

from the Fττ relation in (A.5), this equation doesn’t involve any derivatives of B(ρ),

so its solution doesn’t involve additional integration constants:

B(ρ) =
2(ikSΩC(−1) + Ω2A

(0)
T − 2A

(2)
T )

k2
S

ρ2 +

[

k2
S − 2 + 2Ω2

4(k2
S − 2)

(

ϕ(1) +
3ρ0ϕ

(0)

k2
S − 2

)

+

+
2Ω(ikSC(−1) + ΩA

(0)
T ) − 2(1 + Ω2)A

(2)
T

k2
S

]

+

[

ρ0

(

ϕ(1) +
3ρ0ϕ

(0)

k2
S − 2

)

−

−2ρ0Ω(ikSC(−1) + ΩA
(0)
T )

k2
S

+
k2

S(k2
S − 2)

6
ϕ(0)

]

1

ρ
+ O

(

1

ρ2

)

.

(A.11)

4. Finally, we solve for AL(ρ) from the second equation in (2.11) with β = τ . Again,

this equation doesn’t involve any derivatives, so we have no integration constants:

AL(ρ) =

[

4A
(2)
T − k2

SA
(0)
T

2k2
S

− 1

2

(

ϕ(1) +
3ρ0ϕ

(0)

k2
S − 2

)]

+

+

[

− (k2
S − 2)A

(2)
T

2k2
S

+
k2

S − 2

8

(

ϕ(1) +
3ρ0ϕ

(0)

k2
S − 2

)]

1

ρ2
+

+

[

− ρ0A
(2)
T

k2
S

+
ρ0

4

(

ϕ(1) +
3ρ0ϕ

(0)

k2
S − 2

)

+
k2

S(k2
S − 2)

24
ϕ(0)

]

1

ρ3
+ O

(

1

ρ4

)

.

(A.12)

It can be checked that the above series solutions automatically satisfy the other two

equations in (2.11) that we have not used. Also, the fact that the integration constants

A
(0)
T , A

(2)
T , and C(−1) are still undetermined is a consequence of the residual gauge freedom

that we discussed at the beginning of this section: these three integration constants allow

us to set the values of three of the functions AL(ρ), AT (ρ), B(ρ), and C(ρ) at a given point

to whatever we want.

Requiring that the metric perturbations don’t grow like ρ2 at large ρ and using (A.8)–

(A.12), we get A
(0)
T = A

(2)
T = C(−1) = 0, together with

ϕ(1) +
3ρ0ϕ

(0)

k2
S − 2

= 0 , (A.13)

which is the same as (3.6).
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We note that the relations (A.13) and A
(0)
T = A

(2)
T = C(−1) = 0 make almost all terms

written in the series expansions (A.9)–(A.12) disappear, and we’re left just with

HL =
k2

S(k2
S − 2)

24
e−iΩτ ϕ(0)

ρ3
+ O

(

1

ρ4

)

HT =
k2

S(k2
S − 2Ω2)

12
e−iΩτ ϕ(0)

ρ3
+ O

(

1

ρ4

)

fττ =
k2

S(k2
S − 2)

6
e−iΩτ ϕ(0)

ρ
+ O

(

1

ρ2

)

fτ = − ikSΩ(k2
S − 2)

6
e−iΩτ ϕ(0)

ρ2
+ O

(

1

ρ3

)

,

(A.14)

which looks incredibly similar to the expressions found in section 3.3.2 of [21] in AdS5-

Schwarzschild. In light of the analysis done in [21], it is worth mentioning that the leading

coefficients in (A.14) give, up to a proportionality factor, the expectation value of the stress-

energy tensor in the boundary 2 + 1-dimensional CFT. Conservation and tracelessness of

the stress-energy tensor can then be easily checked using the same approach as in [21].
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